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A method for calculating the effect of the curvature of a solid wall bounding a viscous 
fluid upon the quasi-static Stokes force F and torque T experienced by a spherical 
particle performing arbitrarily directed translational and rotational motions in close 
proximity to the wall is given. The results presented herein are valid for values of the 
ratio K = a/d (a = sphere radius, d = shortest perpendicular distance from the sphere 
centre to the wall) over the entire range 0 d K d 1, provided that /3 = a/R, < 1 and, 
simultaneously, d/R, = / 3 / K  < 1 (R, = characteristic radius of curvature of the wall). 
Unlike existing wall-effect theories, our results are valid for K = O( 1). It is shown that 
to the first-order in /3 (and, concomitantly, in d/R,), wall curvature effects upon F 
and T depend linearly upon two scalar principal curvature coefficients of the wall a t  
the foot of the shortest normal to the wall from the sphere centre. This single-particle 
analysis is used to resolve a ‘paradox’ relating to macroscopic slip boundary 
conditions prevailing a t  a wall bounding a dilute ferrofluid suspension undergoing 
rotation relative to a magnetic field. 

1. Introduction 
The problem of calculating the increased Stokes resistance of a spherical particle 

moving proximate to a wall has a long history dating back nearly a century to 
Lorentz (1896) for plane walls and to Ladenburg (1907) for circular cylindrical walls. 
Reviews which summarize most of the significant studies to date are available in 
Happel & Brenner (1965), Brenner (1966, 1972), Goldsmith & Skalak (1975), Leal 
(1980), Hasimoto & Sano (1980), O’Neill & Ranger (1982) and Hirschfeld, Brenner 
& Falade (1984). 

For the case K = a/d < 1 and /3 = a/R, 4 1 (where a = sphere radius, d = shortest 
normal distance from the sphere’s centre to the wall, R, = characteristic radius of 
curvature of wall), Cox & Brenner’s (1967a) analysis provides a general method for 
determining the Stokes resistance of the sphere. However, their results may fail to 
yield convergent expressions when dlR, = p / K  < 1 (Hirschfeld et al. 1984). This 
convergence problem can be avoided by employing the asymptotic scheme of Falade 
& Brenner (1985) jointly with certain results of Hirschfeld et al. (1984). 

For circumstances where K = O ( l ) ,  most analyses (of the d/R, < 1 case) treat only 
the problem of a plane wall, corresponding to R, = 00 (Brenner 1961 ; Dean & O’Neill 
1963; O’Neill 1964; Cox & Brenner 1967b; Cooley & O’Neill 1968; Lee & Leal 1980, 
to cite a few). Among the studies of sphere motions occurring nearby to  curved 
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boundaries are those of: (i) ,Jeffery (1915), Stimson & ,Jeffery (1926), Majumdar 
(1965, 1967), O’Seill (1969). Cooley & O’Neill (1969a,6), Davis (1969), O’Xeill & 
Majumdar (1970a. 6) and Cooley (1971), who collectively calculated the resistances 
of two proximate spheres (equal or unequal) performing arbitrarily directed relative 
translational or rotational motions ; (ii) Bungay & Brenner (1973) and Cox (1974), in 
which ‘ lubrication-theory ’-like singular perturbation techniques were employed to 
analyse the narrow-gap case, K --f 1, for the case of non-spherical and non-planar 
bounding walls ; (iii) Gluckman, Pfeffer & Weinbaum (1971) and Leichtberg, Pfeffer 
& bi’einbaum (1976). in which a numerical scheme was used to calculate the 
axisymmetric flow past concentrically positioned spheres, spheroids and clustcrs of 
spheres enclosed within a circular cylinder; (iv) Lee & Leal (1982), Rho numerically 
calculated the resistance of a sphere in the presence of a deformable interface. 

This paper describes an asymptotic scheme for calculating first- and higher-order 
wall curvature effects upon the Stokes resistance of a sphere for the dual range 
K = O(1) and d/R,  4 1 (though. in fact, we shall only bring the calculations to 
fruition here to the first-order in d/R,). Previous practice has been to employ the 
sphcre/plane-wall results (Lee & Leal 1980) whenever wall effects were required for 
K = O ( l ) ,  even when the boundaries were, in fact, (slightly) curved. But, as observed 
by Brenncr (1984) in commenting upon classes of d/R,  4 1 problems involving the 
motion of spherical particles proximate to curved walls, ‘paradoxical. results may 
arise in applications. This owurs when attempts arc made to asymptotically compare 
results derived for the K 4 1 case with corresponding ones derived from sphere/ 
plane-wall solutions for the K = O(1) case. In particular, it was observed that no 
common overlap region exists between these two alternative d/R,  4 1 solutions, and 
hcnce that a smooth transition hetween the K < 1 and K = O( 1) cases apparently fails 
to exist. even with regard to the algebraic signs of the hydrodynamic coupling 
coefficients connecting the translational and rotational motions of the sphere. 

Resolution of this ‘paradox ’ is achieved herein by demonstrating that proper 
matching between the outer ( K  < 1) and inner LK = O(l)] regions requires more than 
the supchcial considerations heretofore addressed to this d/R,  4 1 case. In a sense 
the problcrn is a classical one in the theory of matched asymptotic expansions for 
situations in which there exist not one, but rather two small (non-dimensional) 
parameters characterizing the problem, these being a / R ,  < 1 and d/R,  < 1 in the 
present case. 

A summary of the general contents of the paper now follows. In  $ 2  we formulate 
thc Stokes flow problem for a translating-rotating sphere moving in close proximity 
(d/R,  < 1) to a curved solid wall. An asymptotic solution scheme is formulated in $3.  
Explicit expressions are derived in $4 for first-order wall curvature effects upon the 
Stokes force and torque. These results are used in $5 to determine the resistance of 
a proximate sphcre of radius a translating and rotating internally or externally to a 
spherical wall of relatively large curvature R, for the case where /3 = a / R ,  4 1. These 
asymptotic sphcricdwall rcsults arc compared with known exact bipolar- or 
tangcnt-sphere-coordinate-dcrivctl sphere/sphere results (valid for all physically 
possiblc 1) for both the interior and exterior cases. Finally. $6 applies our asymptotic 
results to the case of a relatively small spherical particle moving nearby to the wall 
of a large circular cylinder. Thereby, the d/Ro 4 1 ‘paradox ’ that spawncd this study 
is rcw)lvctl by demonstrating the existence of an asymptotic regime in which the 
K < 1 and K = O(1) solutions are satisfactorily matcahed. resulting in a smooth 
transition between the two. 
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FIGURE 1. Spherical particle S near a slightly curved wall W .  Definition sketch 

2. Formulation 
Consider a sphere (8) of radius a translating and rotating ‘slowly’ in an otherwise 

quiescent viscous fluid (with respective velocities Ui and Qi) in proximity to an 
arbitrarily curved solid wall ( W )  (figure 1). Let the characteristic radius of curvature 
R, of the wall in the immediate proximity of the sphere be such that 1 9 a /R ,  (=p,  
say)), and let the sphere centre 0 be momentarily at the point ( O , O , d )  relative to a 
Cartesian coordinate system ( x i ,  x;, xj) whose origin Q lies a t  the foot of the shortest 
possible normal to 1Y passing through 0. Additionally, let the coordinate surface 
xi = 0, which contains the x i  and xi axes. be the tangent plane of W at Q. As in the 
sketch shown in figure 1, we shall always choose the positive x i  axis to lie along the 
line drawn from Q through the sphere centre 0, irrespective of whether the sphere X 
lies external or internal to the surface xg =f(x i , x ; )  describing the wall W .  

For now. no restriction will be placed on the ratio K = a / d  other than 0 < K < 1. 
However, we shall rcquire that, like alR,, d/H, satisfy the inequality d/R, 6 1 .  It 
will be assumed that the respective domains of xi and x i  spanned by the wall lie in 
the bounded regions -8; < x i  d y; ( a  = 1,2),  where and lyjl are each much 
greater than a and d .  

m’e seek to determine the fluid velocity vi (i = 1 , 2 , 3 )  and pressure p‘ generated by 
the sphere’s motion. Though this flow is generally unsteady, we shall nevertheless 
suppose the fluid motion to be governed by the quasi-steady Stokes equations 

ruvu:.jj-P:, = 0 (2.1) 

and v;,? = 0. ( 2 . 2 )  

These are to be solved subject to the boundary conditions 

def 

vi = CTi + etjk SZ; X; on rf2 = xiz + xh2 + ( x i  - d ) 2  = a2, ( 2 . 3 ~ )  

(2 .3b)  

vi+O as Ir’l+co. ( 2 . 3 ~ )  

- 
vi = 0 on x j  = f ( x ; ,  x i ) ,  (8; d x i  < y i ,  8; < x; d y ; ) ,  
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Here, E; = xk-dsk3. Note that ( 2 . 3 ~ )  need not be satisfied in circumstances where W 
completely encloses S.  

In terms of dimensionless quantities defined as 

(2.4) 

(a  = 1 , 2 ) ,  (with rJo a characteristic particle vclocity), the preceding system of 
equations becomes 

(2 5) 

f i j , j  = 0, ( 2 . 6 )  

fit = U ,  + et jk  Ql Zk on F 2  = Zq + 2; + (Z3 - P K - ' ) ~  = p2, (2.7) 

fi, = o on z3 = J Z , , X " ~ ) ,  (S; < 2, < y , ,  s", < 9, < y 2 ) ,  (2.8) 

E,+0 asId+co. (2.9) 

f i a ? j j - @ , a  = 0, 

clef - - _  

Again, (2.9) is enforced only if the wall does not completely enclose the sphere. In  

The boundary-value problem posed by (2.5)-(2.9) does not lend itself to exact 
analytical solution except in the special cases where W is such as to permit the use 
of bipolar coordinates, namely (i)J.E1, 2,) = 0, corresponding to a plane wall (cf. the 
list of references for this case cited earlier) ; and (ii) the curved boundary W is itself 
a spherical surface (cf. earlier references thereto). An asymptotic solution is proposed 
in the next section for the case where d/Ro = PK-' < 1, with K of order unity or 
smaller. 

It will be assumed henceforth thatfix",, Z 2 )  is an analytic function at Q and, if more 
than one normal can be drawn through the sphere centre 0 from W ,  that  the shortest 
such normal distance is much smaller in length than the others. BJ virtue of the 
definition of the coordinate system, the Taylor series expansion off  about Q is 

(2 .10a)  

( 2 . 7 ) ,  2 = .Ek-pK-1sk3.  

&,, .E2) = 2? 2, + &aajk 2, 2? 2, + . . . , 
where ( 2 . 1 0 6 , ~ )  

(i,j ,  k = 1,2) .  If  the surface is sufficiently regular a t  Q, then a12 = aZ1 and 
at?, = = a,,? (no sum on i ) .  Moreover, it is always possible to orient the 2, and 2, axes 
such that ul2 = a2, = 0. corresponding to choosing the principal axes of curvature? 
at Q for the definitions of these Cartesian axes. 

2.1.  Perturbation expansions for f i i  and 5 
Upon suppressing the wall 'curvature ' tensors ajk, aikL, . . . from the arguments of the 
respective fields i j i ( Z : ; P ; ~ ; a i k ; a i k l ;  . . . )  and ~ ( Z ; P ; K ; C C ~ ~ ; O ~ ~ , ~ ; . . . )  [with x" = (z1,2,, 

t Because of our arbitrary sign convention in figure 1 regarding t,he direction of zj with respert 
t o  the cBoncavity or convexity of W at Q, the dyadic cttj may differ by an algebraic sign from the 
usual curvature dyadic -V, ,n  [with V,, = (/-nn).V) the surface gradient operator] (Gibbs & 
Wilson 1960 : Weatherburn 1927 ; Misner. Thorne & Wheeler 1973), according to  t,he so-called 
'positive' unit normal vector n to  W at Q lies parallel or antiparallel to  the unit vector ij. Despite 
this ambiguity, we shall nevertheless refer t o  aij as the curvature dyadic. 
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Z3)] satisfying (2.5)-(2.10), we shall henceforth assume - subject to a posteriori 
verification - the existence of a solution of this system of equations of the form 

C i ( f ; / 3 ; ~ )  = o ~ i ( ~ ; ~ ) + / 3 1 ~ i ( ~ ; ~ ) + / 3 2 2 ~ i ( ~ ; ~ ) +  . . .  , 

@(z; p ;  K )  = P ’ o p ( X ;  K )  K )  + p @ ( X ;  K )  +. * .  , 

(2.11) 

(2.12) 

def 

in which xi = P1Zi (i = 1 ,2 ,3 )  are ‘stretched’ variables. As indicated by the 
notation, the wall ‘curvature’ tensor coefficients ajk,  a jk l , .  . . have been explicitly 
suppressed in the arguments of the perturbation fields n ~ i ,  ,p (n = 0 , 1 , 2 , .  . .) 
appearing on the right-hand sides of the above equations, although they are 
understood to be implicitly present. When expressed in terms of the stretched 
coordinates x = (xl, x2, x3), these perturbation fields will be shown to be independent 
of p, as already suggested by the explicit absence of /3 from the arguments of these 
fields. 

In  terms of the stretched independent variables xi,  (2.10) may be rewritten in the 
form 

(2.13 a )  x3 = f(xl, x 2 )  = +paij xj xi + +paijk xk xj xi + o(p3)), 

where (2.13b,c) 

The wall boundary condition (2.8) may be transferred to the plane x3 = 0 by 
expanding Ci in a Taylor series about x3 = 0. Taking into account the asymptotic 
form (2.11) for Ci, such an expansion leads to the expression 

O v i  + P [ t a k m  xm xk O v i ,  3 + lvil + p 2 [ i a j k m  xm xk xj O’i, 3 

+ Q ( a k m  XmXk)2gwi,33++akmXmXk1wi,3+2wi]+O(p3) = 0. (2.14) 

Provided that /3 6 1, equation (2.14) closely approximates (2.8). When (2.11) and 
(2.12) are substituted into (2.5)-(2.7), and terms of like order in p collected together, 
the following ordered sets of perturbation equations and boundary conditions 
result : 

2.1.1. Zero-order equations 

ovi,jj-op,i = 0, ovj,j = 0, (2,15a, 6) 

(2.16) 

ovi = 0 on x3 = 0, (2.17) 

owi+O as Irl+Co, (2.18) 

def 

ovi = U i  + eijk Qj z k  on r2 = xi + X: + (x3 - K - ~ ) ~  = 1, 

where zk = X ~ - K - ~ ~ , ,  in (2.16). 

2.1.2. Pirst-order equations 
1vi,,jj-lp,i = 0, 1vj,i,j = 0, 

lwi = 0 on x;+x;+(x3-K-1)2 = 1 ,  

lvi = -la 2 km xm xk O v i ,  3 On x3 = O, 

lv i+O asIrl+co. 

From (2.156) and (2.17) it follows that 

1W3 = 0 on x3 = 0 

(2.19a, b )  

(2.20) 

(2.21) 

(2.22) 
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2V,Ji--2P,Z = 0, F J 3 j  = 0, (2.23a, b )  

gvl = 0 on x ; + x ; + ( x , - K - 1 ) 2  = 1, (2.24) 

2v, = xm xk ]vt, 3 - i ( i a k m  xm X k ) '  ow,, 33 - i a J k m  xm xk xj ow,, 3 on xs = 0, (2 .25 )  

2v,+0 asIrl+co. (2.26) 

'Far-field' boundary conditions such as are embodied in (2.18), (2 .22 )  and (2.26), 
which require the vanishing of the perturbation velocity field nvu, (n = 0,1,2,  . . .) a t  
'infinity', do not derive from (2.9) in circumstances where the curved wall W 
partially or completely encloses the sphere 8. (For example, W may be either an 
infinitely long or finite-length circular cylinder containing AS in its interior.) Rather, 
these far-field boundary conditions represent a transference to infinity of the original. 
exactly posed, zero-velocity, no-slip boundary condition imposed upon the second 
branch of W (e.g. the opposite side of the circular cylinder), which is physically 
situated a t  a finite distance from the sphere. Formal details confirming the 
legitimacy of this far-field transference to infinity can be found in our earlier 
contribution (Falade & Brenner 1985; see equations (2.5 
paper). 

3. Solution 

It can be readily deduced from the analysis of Lee & Leal 
solution of ( 2 . 1 5 ~ )  in spherical bipolar coordinates ( c , ~ ,  $6) is 

3.1. Zero-order solution 

and (2.11) of that 

1980) that  a general 

m m  1 
O p = - ( c o s h r - p ) ~  C C [AEsinh(n+$,)q+BT cosh(n++)r]  

m=o n=m C 

x cosh(m$6+am)YT(,u), (3.1) 

ovl = ix,  op + i(uo + vo) cos ($6 + ao)  +$,(uo - vo) cos ($6 - ao) 

1 "  1 "  +- C y m  cos[(m+1)$6+am]+- C xm cos[(m-1)$6+am], (3.2) 
2 m=l 2 m = l  

= ~ X ~ ~ ~ + ~ ( U ~ + ~ ~ )  sin ($6+a,)+$,(uo-q,) sin ($-ao) 

1 =  1 "  +- C y m  sinL(m+1)$6+am]+- C xm sin[(m-l)$+a,], (3.3) 

ov3 = &,,p+(coshr-p); C C (7: s inh(n++)r  cos (m$6+am)I - )~ (p ) ,  (3.4) 

2 m = l  2 m=l 
C O W  

m=o n=m 

where the am (m = 0 , 1 , 2 , .  . .) are constant phase angles, and 
" 

ym = (coshr-p); X [I); s inh(n++)q+Ep cosh(n+i)r]P;+'(p), ( 3 . 5 ~ ~ )  

xm = (coshr-p); C [ F p  s i n h ( n + i ) r + G p  c o s h ( n + i ) r ] P ~ - ' ( p ) ,  (3.5b) 

(3.5C) 

( 3 . 5 4  

n=m+l 

m 

n=m-l 
02 

uo = (coshq-p): C [D\ sinh(n+$,)r+E\  cosh(n++)q]P~(p) ,  
n=o 

m 

vo = (coshv-p): C [PO, sinh (n++)q+GO, cosh(n+$,)r]Pk(p). 
n=o 
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Here, ,u = cos 6 ,  while the coordinate systems ( x l ,  x2,  x3),  ( r l ,  $, x3) and ([,y, $) are 
interrelated by the equations : 

x1 = rl cos$, x2 = rl sin$, x3 = c sinhq(coshy-p)-l, 

in which rl = c( l  -,u2)i (coshy-p)-'. 

PF is the associated Legendre function of the first kind. 

correspond to y = 0 and q = cosh-'(K-l) or, equivalently, q = coth-'(l/Kc). 

condition (2.17), the following relations must exist between A:, BF, . . . , GF :t 
For m = 0, 

In the ([,q, $) system the plane x3 = 0 and the sphere surface respectively 

I n  order to satisfy the continuity equation (2.15b) and the no-slip wall boundary 

+$A; +a(.+ l)AO,+,-n(n- 1) DO,-' + 2n(n+ 1 )  DO, - (n+ 1 )  (n+2)  DO,,, = 0 
(3.6) 

and 

-~TLBO,--,+$BO,+~(~+ 1) BO,+,-~CO,_ ,+(~~+~)CO,- (TL+ l)CO,+,, 

-n(n- 1 )  EO,-, + 2n(n+ 1) EO, - (n+ 1) (n+ 2) EO,,, = 0 ; (3.7) 

For m 2 1, 

For all m, 

BF+l . ( 3 . 1 0 ~ )  (n +m + 2) EF+l = -- 1 [---] BFPl - EF-l +EF - 
(n-m- 1 )  

2n- 1 2n+3 2 2n-1 2 n + 3 '  

For m 2 0, 

(n-rn+ 1 )  n+m 
GrPl + G: -- 

2n + 3 "+I 

- 
2n- 1 

B;+l] = 0 ;  (3.10b) 
(n -m)(n-m+l )  (n+m)(n+m+ 1 )  --"- - 2 2n- 1 BEE"+ zn+3 

For m = 0, 
GO, = 0. ( 3 . 1 0 ~ )  

The unique solution of the differential equations (2.15) and boundary conditions 
(2.16)-(2.18) is obtained by requiring that (3.1)-(3.4) satisfy the conditions 

oui = U i + e i j k L n j ~ k  on y = yo = cosh-I ( K - ' ) .  (3.11) 

In  (3.6)-(3.9), algebraic sign errors contained in the comparable equations (3.3)-(3.5) of Lee 
& Leal (1980) have been corrected. 

in FLM 193 
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Towards satisfaction of this condition it is convenient to express the fluid velocity 
distribution on the sphere in t'he expanded form 

m o o  

021, = (Coshv,-P)' C C zE(v,) c o s ( m $ + ~ , ) P ~ ( p ) .  (3.14) 

Satisfaction of (3.1 1) requires that the three pairs of coefficients {X: ; a,}, {YE ;a,} 
and {Z? ; a,} be given by 

XE = 0 for all rrz and n, (3.15a) 

m=O n=m 

{YO, ; = C2d2c exp [- (n+B) v,] Q, ; 01, (3.15 6 )  

{ Y k ;  a,} = ( 2 4 2 ~  exp [ - (n+$)y,][Ul-Q,(2n+ 1 + cothv,)]; 0} 

+ ( 2 4 2 ~  exp [ - ( n  + a) yo] [U,  - Q1(2n + 1 + coth ?,)I ; an}, (3.15 c) 

(3.15d) ; a,} = { v ' ~ c  exp [-(n++) 7101 u,; 01, 

{Zk ;a,} = { -22/2c exp [ - (n+i)  yo] Q,; 0} +{ -21/2c exp [ - ( n + t )  yo] 0, ;in}. 
(3.15e) 

All remaining coefficients Y r  and ZF, i.e. those that do not explicitly appear in 
(3.15), arc zero-valued in the expansion of (3.11). 

Upon evaluating (3.2)-(3.4) a t  7 = q,, and comparing the resulting expressions 
with (3.12)-(3.14), we arrive a t  the following relations between A:, BE,. . . ,GE on the 
one hand, and X E ,  Y p  and 2'" on the other: 

1 
D: sinh(n+$)q,+Er cosh(n++)q, = X?(yo)- (2n + 3) sinh 7, [- ZE+l(VO) 

1 
(2%- 1) sinhy, + CE+l sinh (n + $) q,] + [ - Z ~ - l ( y o ) + C ~ - l  sinh(n-$v,] for all m, 

(3.16) 

GO, cosh(n+a)v,+FO, sinh(n+;)q, = Y;(q,), (3.17a) 
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GE cosh ( n + + )  qo + F r  sinh ( .+a)  qo 

(n-m) (n-m+ 1 )  
(2%- 1 )  sinhq, [-zE-l(qo)+CE-l sinh(n-+)q,] form 2 1,  (3.17b) - 

Y A ;  sinh(n+a)q,+Br cosh(n++)q, = -~ 
sinh 7, 

x { e  [Zr-l(q,)-CE-E"_l sinh (n-+) q,]-coshq,[Z~(q,)-C~ sinh ( n + t ) q o ]  

[ .Z~+l(qo)-C~+l  sinh ( n + $ ) q o ]  for all m. 1 n + m + l  
+ 2 n + 3  (3.18) 

3.2. First-order solution 
Define the ancillary fields ( l v f ,  lp*) and ( l B i ,  1$) by the expressions 

lvi = l v f  + ,Bi, lp = lp*  + l$. (3.19a, b )  

The field (,.a, lp*) satisfies (2 .19) ,  (2 .21)  and (2 .22) ,  whilst the field (lBi,  1$) satisfies, 
in addition to (2 .19)  and (2 .22) ,  the no-slip boundary condition 

lBi = 0 on x3 = 0, 
as well as the condition 

lBi = - v* o n ~ f + x : + ( x , - - - ~ ) ~  = 1 .  

(3 .20)  

(3 .21)  

3.2.1. The Jield (,.a, lp*) 

Explicit determination of the wall boundary condition satisfied by (lva,  lp*) on 
z3 = 0 necessitates calculation of ovi,3 a t  x3 = 0. From the identity (cf. Dean & 
O'Neill 1963) { 

(3 .22)  

and the recurrence formula 

a 
x,=o 

p P r  = (2n + l)-l[ ( n  - m + 1) Pr+l + (n  + m) P;-l] ,  (3.23) 

it can be deduced that on q = 0, 
m m  

c c HTP?(p)  J;P;(p)cos($+ao) 
m=o n=m 

m o o  

2c 
m 

+ C R;&P;(p) cos($-a0)+ C Z J r P r ( p )  C O S ( ~ $ + ~ , )  
n=l m=o n=m 

n=1 

I1 m m  

+ C C JEPE(p)sin(m$+a,) , 
m=O n=m 

Ov3,3 = O. 

(3.24 b )  

and (3.24 c )  
18-2 
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Here, HF = T(AF) = (n+fr)AF-f(n-m)A~pl-i(n+m+ l)AF+l, ( 3 . 2 5 ~ ~ )  
def 

JF = (1 - Smo - Sml )  [ (n  + f) Upp1 -f(% -m) Dm-l *-I - - ;(n+m+l)D:;;] 

+ (n + f) FF" -i(n - m) FF:,' - i (n  + m + 1 )  F;:;, (3.25 6 )  

J: = T(D0,+FO,), K: = T(Di-FO,) .  (3 .25c,  d )  

and For later reference it will prove convenient to define harmonic functions q50. 
$2 (containing the preceding constants) as 

$o = p(coshy-p); C C H F P F ( p )  cos(m$+a,) exp[-(n++)r] ,  
m m  1 

( 3 . 2 6 ~ )  
m=o n=m 

m 1 
2c 

= -(coshy-p)i J:Pk(,u) cos($+ao) exp[-(n++)y] 

n=1 m=o n=m 

x exp [- (n  + t )  y]}, (3 .266)  

m m m  

+ C RO,P',(p) sin($-ao) exp[-(n+;)y]+ C C J;PF(,u) sin(m$+a,) 
n=l m=o n=m 

x e x p [ - ( n + f ) ~ ] } .  ( 3 . 2 6 ~ )  

Note that these harmonic functions are nowhere singular in the region y > 0. 
The field ( , v t ,  I p * )  is determined here by using a general solution of (2.1) and (2 .2 )  

in terms of harmonic functions (Falade & Brenner 1985 ; Aderogba 1977), invoking 
particular choices for these harmonic functions appropriate to satisfying the wall 
condition (2.21). The desired construction relies, ab initio, on the fact that if $o and 
$i ( i  = 1,2 ,3)  are any harmonic functions, then 

1': = !d($O+xk$k),i-2$ril ( 3 . 2 7 ~ )  

and IP* = $ j , j  (3 .276)  

satisfy ( 2 . 1 9 ~  and b) .  Passage from the general solution (3 .27)  to particular solutions 
appropriate for and lp* is aided by the following results, all but the last of which 
are given by Falade & Brenner (1985) (in slightly different and less general versions) : 
If @(xl, x2, x 3 )  is harmonic in its domain of definition, so also are the functions 

w k ( x 1 > x 2 > x 3 ; @ )  = x k B r 3 h , , d , , ,  (3.28 a )  

(3 .28b)  

( 3 . 2 8 ~ )  
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(with h, i,j, k 4= 3), provided that the integral functions? J@ dx,, JW,dx,, SX,, dx, and 
JYij, dx, are themselves harmonic. The latter conditions are satisfied by the functions 
defined in (3.26), as is evidenced by the fact that if @ is expressible in the form 

1 sinh (n + a) 7 
cosh (n+k) q 

m c c  

@ = (cosh 7 -p ) t  X I: a: PE(p)  cos (m$ + a,) 
m=O n=m 

then J@dx, may be expressed as 

cosh (n + a) q 
sinh (n + a) 7 

m s c  

@ dx, = (cosh q -p)$ C C b: PE(p)  cos (m$ + am) s m=O n=?n 

where the coefficients b; are to be determined by solving1 the infinite set of linear 
equations 

a: = - (n  - m) bE-l + (2n + 1 )  b z  - (n + m + 1 )  bp+1. (3.30) 

To secure convergence of the infinite series in (3.29) it is required that 

bE+O a s n + c c  forallm. (3.31) 

Guided by the fact that a necessary condition for (2.21) to be satisfied by ,vt is 
that 

,v: - akm x,, x, ovi, , on x, = 0 ,  

we make the following choices for t+kr0 and @i (i = 1 ,2 ,3 )  : 

in which i,j, k = 1,2.  In  (3.32)-(3.34) the summation convention with respect to 

t All explicit constants and functions of integration are to be omitted in the evaluation of 

These integrals are, however, to be evaluated in accordance with (3.29)-(3.31). 
1 An algorithm for directly solving (3.30) subject to (3.31), without having to either invert a 

matrix or perform iterative calculations, has been developed. The algorithm involves evaluating 
the double sum 

n- 

N ( f l y v 3  ) 
b z =  C 

*”=- (n” + m + 1 ) t;, 

tz = 0 for 12’ < m, t; = 1, t;+l = 2m+ I ,  for each m, where 

and t? = ( 1 ~ ’ - m ) ~ ~ [ ( 2 n ’ - 1 ) t ~ ~ , - ( ( n ’ + m - ~ ) t ~ ~ , ]  form’> m + l .  

The upper limit N is to be chosen sufficiently large such that bF+l % 0. 
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repeated indices prevails. In  the expression for $, that follows we omit the 
arguments (xl, x2, x,) for the sake of brevity : 

(3.35) 

in which i,j, k ,  rn, n = 1,2. It has been tacitly assumed in writing (3.35) that uI2 = 
u21 ; otherwise, the resulting expression for $, would have been much lengthier. In  
(3.35), J””( ) dx, denotes an n-tuple integral with respect to x,, namely 

s” ( )dx,Z[/. . .[( )dx,dx,. . . dx, 

However, our notation for the single integral (n = 1) retains its customary form, 
namely J”( ) dx,. 

Inasmuch as the field ( 1 ~ : ,  I p * )  possesses no singularities in the domain presently 
occupied by the sphere, the forces and torques exerted on the sphere by this field are 
identically zero. With $o and $i (i = 1,2,3) now determined, lv: and Ip* may be 
obtained by employing (3.27). 

3.2.2. The Jield (l$i, 1$) 

In  order to determine the force and torque on the sphere to the first order in /3 it 
proves unnecessary to first calculate the field (14i, l$). This is so because the Stokes 
force and torque lT, arising from an arbitrary field satisfying (2.15) and (2.17), and 
which satisfies arbitrary velocity distributions vsj and vmj on the sphere and a t  
infinity, respectively, are given by the expressions (Brenner 1964b; Goldman, Cox & 
Brenner 1967 b )  

1q = ~snkP&(csj-vmj)d8, (3.36) 

n-times 
n times 

1q = [s”kP&;(vsj-v,,)d8. (3.37) 

Here, and P&\ derive their definitions from the respective relations 

gw = UkPg??, g(9 = Q k P(‘) kij> 
23 23 

where ~ ~ 6 1 ’  is the stress tensor for the field (ovi,op) (equations (2.15)-(2.18)), 
corresponding to the case 0 = 0 in (2.16), whereas vij” is the comparable stress tensor 
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corresponding to the case U = 0 in (2.16) ; n, is the unit outward-drawn normal 
vector to the surface R of the sphere over which (3.36) and (3.37) are to be evaluated ; 
dS is a scalar element of surface area on the sphere. 

Should it ever become necessary to calculate the force and torque on the sphere to 
order p2, it would then be inevitable to calculate the field (16i, ,$), since the wall 
boundary condition (2.25) defining the second-order field requires explicit knowledge 
of ,di. In  principle, this first-order field may be determined by expanding -lv:(<, 
7,  q5) in a series of the form (3.12)-(3.14). The resulting expansions, together with 
the general Stokes field (3.1)-(34, and appropriate equations which are equivalent 
to (3.6)-(3.10) and (3.15)-(3.18), may then be used to uniquely determine (ldi, l$). If 
expansions of the form (3.12)-(3.14) can be found for their respective auxiliary fields, 
terms of third and higher orders in the asymptotic expansions of the force and torque 
may also be calculated by employing the general procedure just outlined above. 
Though straightforward in principle, the length and tedium of the requisite algebraic 
calculations are daunting. Consequently, the scope of the present paper will not 
extend beyond calculating first-order curvature effects - explicitly, terms of order p 
in the asymptotic expansions of the force and torque for small p. 

Observe that the first-order velocity field depends linearly upon the three 
independent wall curvature coefficients aii (i,j  = 1,2) .  However, as earlier noted, the 
dependence of the velocity field upon aI2 (or a21)  may be eliminated by an 
appropriate choice of the coordinate axes. Therefore, by virtue of (3.36) and (3.37), 
the contribution of the first-order field to the sphere's hydrodynamic resistance also 
depends linearly upon the remaining non-zero coefficients, all = al,  say, and = 
a2,  say. Furthermore. it may be anticipated that the contribution of each of the 
ordered fields also depends upon the parameter K (in addition to the principal values 
a1 and a2 of a), since this parameter features in all the ordered sets of differential 
equations and boundary conditions (2.15)-(2.26) governing each such field solution. 

3.3. Hydrodynamic resistivities 

Given the preceding remarks, we are led to conclude that when the sphere lies 
proximate to a mildly curved wall (d/R,  < 1 )  and when p < 1, the non-dimensional 
hydrodynamic force and torque (about the sphere centre) 

def $7' def Ti 
F. = 2 Ti = - ' 6npa' 8npa2 

exerted upon the translating-rotating sphere are 

(3.38a, b )  

where, for n = 0,1, 
- (3.40 a )  

- n T =  ,Kc. U+,K'.Q. (3.40b) 

In  these expressions nKt, ,K' and nKC denote respective (dimensionless) translational, 
rotational and coupling Stokes hydrodynamic resistance dyadics for the sphere. 
(Here and throughout, the superscript 7 denotes a transposed dyadic.) The resistance 
formulation (3.39) and (3.40) incorporates the usual (Brenner 1964a; Happel & 
Brenner 1965) kinetic. symmetries of the hydrodynamic resistance dyadics for the 
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spherical particle in the presence of boundaries. This accounts for the presence of the 
same term .Kc in both (3.40a) and (3.406).? This same reciprocity principle requires 
that nKtl’ = ,Kt and .KrY = nKr.  Moreover, the scalar and pseudoscalar resistance 
coefficients making up these resistance dyadics satisfy a variety of inequalities 
deriving from the positive-definiteness of the energy dissipation occurring within the 
fluid. Rather than tabulating the pertinent inequalities here explicitly, we shall 
instead simply note that the algebraic signs and numerical values subsequently 
obtained for these resistances are consistent with the requisite inequalities. 

As the intrinsic resistance dyadics n K ( )  are purely geometric in nature - dependent 
only upon the position ( K )  of the sphere (centre) relative to the wall, and the 
respective n = 0 and n = 1 ‘shapes’ of the bounding wall in its proximity - we may 
employ geometric symmetry arguments (Brenner 1964a ; Happel & Brenner 1965) to 
anticipate their general forms. These forms, subsequently tabulated in (3.44) and 
(3.47) for the respective n = 0 and n = 1 cases, have been confirmed to be consistent 
with the subsequent detailed numerics. 

In  the purely geometric context appropriate to discussing these dyadics, it proves 
convenient to rewrite the (non-dimensional) equation (2.13) of the wall W in the 
invariant form 

i 3 - r = $ ? r - u - r + O ( p 2 )  on W ,  (3.41) 

with r = i, x, + i ,  x2 + i3 x, the position vector drawn from the contact point Q ,  and 
ik a unit vector in the xk direction. I n  (3.41) we note that u = ull and i ,  u = 0.  In  
terms of the principal axes of the curvature dyadic u = iiikaik (summation 
convention) of W a t  Q ,  we have that 

u = i, i ,  a, + iz iz a,, (3.42) 

with (a,, a,) the principal curvatures, given explicitly by the expressions 

(3.43a, b )  

The orthonormal system of unit vectors will be supposed ordered so as to constitute 
a right-handed system in the natural order ( i , ,  i , ,  i , ) .  

As a consequence of (3.41), the geometric shape of the combined spherelcurved- 
wall configuration is governed to O(p)  by the directional parameters i ,  and u. 

3.3.1. Zero-order resistivities oK0(i3; K )  

To terms of O($) in (3.41), the wall W is defined by the equation i ,  - r = x, = 0 on 
W .  Thus, the n = 0 resistance coefficients in (3.39) correspond to the case of a sphere 
in proximity to a plane wall. With i ,  normal to W (and pointing in a direction that 
passes through the sphere centre 0; cf. figure l), the geometric symmetry of the 
spherelplane-wall configuration corresponds to that of transverse isotropy (i.e. the 
symmetry of a body of revolution) with respect to the i, axis. For the true tensors 

t In this context the appearance of the extraneous factor o f t  multiplying J+ in (3.400,) arises 
from the fact that the numerical factor of 6n: in the normalization of ( 3 . 3 8 ~ )  differs from the 
comparable numerical factor of €371 employed in the normalization of (3 .38b) .  The extraneous factor 
arises only in the normalized non-dimensional form, but not, of course, in the usual dimensional 
form. 
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K-' a b c d e t  

547 

co 1 +&K 1 + i K  1 +&K3 1 +$K3 $K4 

10 1.059 5 1.1262 1.000 3 1.0001 0.9012 (-5) 
5 1.1259 1.285 1 1.002 5 1.0010 0.1385 (-3) 
3 1.2272 1.569 2 1.0118 1.0047 0.1020 (-2) 
2 1.3828 2.1255 1.041 8 1.0159 0.50247 (-2)  
1.8 1.445 2 2.3988 1.058 9 1.0220 0.7687 (-3) 
1.6 1.5344 2.8489 1.087 9 1.031 8 0.12543 ( -  1) 
1.5 1.6007 3.1792 1.1126 1.039 1 0.171 10 ( -  1) 
1.4 1.6755 3.7356 1.1430 1.0489 0.22613 (-1) 
1.2 1.952 7 6.3409 1.2766 1.0832 0.49638 ( -  1) 
1.1 2.2643 11.4592 1.4549 1.117 1 0.88763 ( -  1) 
1.075 2.3943 14.8443 1.530 8 1.1296 0.10887 
1.050 2.5997 21.585 8 1.6690 1.1451 0.13844 
1.025 2.9547 41.722 2 1.9170 1.1658 0.18104 
1.005 3.7863 202.054 4 2.5056 1.2005 0.34192 

1 + A-' In A +0.958 8 A + O(ln A )  S In A +0.3817 1.202 1 + O(A-') & In A -0.1895 

t The parenthetical number (-n) following the entry represents the exponent of ten (lo-") by 
which the entry must be multiplied. For example, for K-' = 5 we have that e = 0.1385 x 

TABLE 1. Zero-order curvature wall-effect coefficients. In tables 1 and 2 we have that K = a / d  and 
A = a/ (d-a) ,  so that the two are related by the expression K - ~  = 1 +k'. The values shown for the 
two asymptotic limits, K-' + 00 and K - ~  + 1, respectively, were derived by the methods discussed in 
the Appendix. 

and and pseudotensor this symmetry requires (Brenner 1964a; Happel 
& Brenner 1965) that 

= ( / - i 3 i 3 ) a + i 3 i 3 b ,  (3.44 a )  

,Kr = ( / - i3 i3)c+i3 i3d ,  (3.446) 

,,Kc = e - i 3 e .  (3.44c) 

The canonical forms (3.44) for these hydrodynamic resistivities may be written in 
more conventional 'matrix ' forms by using the usual representation 

/ = i, i, + iz i, + i3 i3 (3.45a) 
for the unit dyadic, and 

e = i  1 2 3  i i - i  1 3 2  i i + i  2 3 1  i i - i  2 1 3  i i + i  3 1 2  i i - i  3 2 1  i i (3.45b) 

for the unit alternating triadic. 
Each of the five scalar resistance coefficients a,b ,c ,d ,e  appearing in (3.44) is a 

function only of K .  Numerical values giving their functional dependence upon K are 
already available from the sphere/plane-wall analyses of Goldman et al. (1967 a )  and 
Lee & Leal (1980) (and linear semilogarithmic interpolations thereof a t  internodal 
points). For later reference these coefficients are tabulated in table 1. 

3.3.2. First-order resistivities l K ( ) ( i 3 ,  a ; K )  

Given the previous choice of axes 1 and 2 such as to coincide with the principal 
axes of curvature of W at Q, and given the geometric symmetry of the sphere, the 
point-group symmetry elements of the combined sphere/first-order-wall con- 
figuration correspond to the existence of two mutually perpendicular planes of 



548 A .  Falade and H .  Brenner 

reflection symmetry, namely the (x3, xl)- and (x2, x,)-planes - as may also be seen by 
writing (3.41) in the principal axis form 

x3 = g(., x; +a2 xi) + o ( p )  011 w. (3.46) 

As the first-order resistance tensors lK$] in (3.40) are inbrinsic geometrical properties 
of this configuration, these tensors must display these same symmetry properties. 
Accordingly, using well-known (Brenner 1964 a ; Happel & Brenner 1965) symmetry 
results for second-rank tensors and pseudotensors possessing two mutually 
perpendicular planes of reflection symmetry, we are led to the following generic 
expressions for the three first-order resistance dyadics : 

,Kt = ilillKtll+i2i21Kt22+i3i31Kt33, (3.47a) 

,K‘ = i l i l l K ~ l + i 2 i 2 1 K ~ z  +i3i31K:3, (3.476) 

lKc = il i, &‘& + i2 i, ,Ki,, (3.47C) 

involving the six non-zero scalars ,Kjj and lKij in addition to the two non-zero 
pseudoscalars lKtj .  Each of these eight coefficients depends upon K ,  al and a2. 

Now, the linear nature of the differential equations and boundary conditions 
(2.19)-(2.22) defining the first-order velocity and pressure fields (lu,  ,p) - the latter 
fields leading eventually to the first-order forces and torques ( l F , l T ) ,  and hence 
ultimately to the first-order resistance dyadics lKO - is such as to render these 
resistance tensors linearly dependent upon the aii.t Accordingly, in terms of the 
principal values a1 and a2 of aij, each of the eight resistance coefficients appearing in 
(3.47) must be expressible as the linear combination 

(3.48) 

wherein each of the coefficients [iK!] appearing on the right-hand side of (3.48) 
depends only upon K .  In  particular, these coefficients are independent of a, and az .  

The expression (3.42) and (3.43) remains invariant, of course, under a positive 90” 
rotation about the x3 axis. This rotation effects the index label changes 1 + -2  and 
2 --f 1, corresponding to the formal interchange of a1 with a2 (as well as i, with -i2 
and i2 with il). It readily follows that for the true scalar resistance coefficients we 
must have that 

“IKt 1 11 = [ZlKt 1 2 2  = - A ,  LZlKt 1 11 - - [1lKt 1 22 = B, [iIK& = Iq’Kt 33 = - G, (3.49a, b, C )  

t Explicitly, since the only inhomogeneous term appearing in the system of equations defining 
( lv i ,  lp) arises on the right-hand side of (2.21), it becomes possible to determine a (tensorially) third- 
rank ‘velocity’ field lvkm and second-order ‘pressure ’ field J k m ,  respectively defined via the 
relations 

From (2.19)-(2.22) this pair of Cartesian tensor fields satisfies the system of equations 

1wi = l K k r n % m  1P = lE,%,. 

l v * m , H - l P k m , i  = 0, 1 b m ,  j = 0, 

= -;Zk2, 071i,3 on Z3 = 0 ,  

1&:Jm,3+0 as I4 +a. 

lVtkm = 0 on Z ~ + Z ~ + ( Z , - K - ~ ) ~  = 1, 

As this system of defining equations is independent of the curvature dyadic a, one can (in principle) 
imagine first solving these for K k m ( ~ )  and lPkm(~), subsequently deriving therefrom the original 
fields l v i ( ~ ;  a) and l p ( ~ ;  a) via the preceding pair of linear a transformations. This scheme makes 
evident the explicit linear a dependence displayed in (3.48). 
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say, for translation, and 

say, for rotation. On the other hand, for the pseudoscalar resistance coefficients we 

(3.51 a ,  b )  

say, for the coupling case. 

dyadics can be written as 
Consequently, in the principal axis system, (il, i,, i,), the first-order resistance 

lKt = al(il i, A + i, i, B + i3 i3 C )  + a2(il i, B+ i, i, A + i, i, C ) ,  ( 3 . 5 2 ~ )  

,Kr = al(il il D+ i2 i2 E + i3 i 3F)  + a,(il i, E + i, i2 D + i3 i ,F) ,  (3.52b) 

,KC = - al(il i, G- i, i l H )  -az(il i, H - i, il G). ( 3 . 5 2 ~ )  

Equations (3 .52)  may be expressed in an invariant form, wholly in terms of the two 
fundamental directional parameters i, and a geometrically characterizing the first- 
order wall configuration (3 .41) ,  as 

and 

lKt = a(A  - B )  + ( I :  a )  [(/- i3 i,) B + i3 i, C ] ,  

,Kc = - a  - (E - i,) G -  (E . i,) . aH. 

(3 .53a)  

(3 .536)  

(3.53c) 

The eight independent (true) scalar coefficients ( A ,  B, C ) ,  ( D ,  E ,  F )  and (G, H )  
appearing in these canonically invariant expressions for the first-order resistance 
dyadics depend only upon K .  Numerical values of these coefficients us. K are tabulated 
in table 2 ,  having been derived from the detailed computational scheme subsequently 
set forth in $ 4 .  

= a(D - E )  + (1: a )  [ (/- i3 i3) E + i3 i3 F ]  , 

3.4.  Hydrodynamic forces and torques 

Substitution of the respective expressions (3.44) and (3.52) for the zeroth- and first- 
order resistance dyadics into the force and torque expressions (3 .39)  and (3 .40)  yields 
the following matrix relation for the non-dimensional force and torque on the sphere, 
correct to the first-order in p :  

- e  ' * i .  
. . . I .  

I 

+a, 

. F1 . . I  . 
I 

+ 0 ( / 3 2 ) .  (3 .54)  
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Readers interested only in applications of (3.54) may proceed directly to $5, 
omitting the detailed scheme outlined in $ 4  whereby numerical values of the first- 
order wall-effect coefficients A ,  B, . . . , H required in (3.54) are calculated as functions 
Of K .  

4. Calculation of the first-order curvature coefficients 
In  view of the linear dependence of the first-order curvature effects upon the aij 

values explicit in (3.54), we may calculate those effects respectively proportional to 
a1 and a2 separately, for which the other curvature coefficient is identically zero. The 
general results for any curved wall (for which, of course, the conditions p 4 1 and 
d/R,  4 1 are satisfied) may then be established by linear superposition of the two 
separate sets of effects. Because precisely the same resistance coefficients (namely 
A ,  B,  . . . , H )  feature in the a1 coefficient matrix of (3.54) as in the comparable a2 
matrix, i t  suffices to focus exclusively upon only the a1 term, say, in order to derive 
the results for the more general case where the curvatures a1 and a2 are 
simultaneously non-zero. This has been done in what follows. 

Moreover, also owing to the linearity of the differential equations and boundary 
conditions, the contributions of the first-order field to sphere resistance when the 
sphere performs an arbitrary translational and rotational motion may be derived by 
linearly superposing the separate resistances for the six independent cases, in each of 
which either the sphere’s direction of translational motion or its axis of rotation is 
parallel to one of the three coordinate axes. For this reason, calculations of the 
sphere’s resistance for each of these six fundamental cases are separately given in 
subsequent subsections. 

More explicit expressions can be written down for the vectors n,Pfiivsj and 
n,P&\vsi (in a quiescent medium vmi = 0) which feature in (3.36) and (3.37). In  the 
first-order calculations, vsj = -lvj*. Therefore, we have that (cf. Lamb 1932) 

In  (4.1), ufj and p:) are the fluid velocity and pressure fields which satisfy (2.15), 
(2.17), (2.18) and the boundary condition 

uf] = Ski 

Similarly, u&) and p r )  satisfy (2.15), (2.17), (2.18) and the condition 

u&) = ekpq 6,, zq 

on the sphere. 

on the sphere. 

In (4.1) and (4.2), R is the spherical polar coordinate defined by the expression 

R2 = xi+xi+E;. 

It is possible to simplify (4.1) somewhat by employing the following lemma : If g is 
a field quantity that adopts a constant value on the surface S of a sphere, then 

(4.3) 
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a t  all points on S. This result is readily established by expressing the Cartesian 
differential operator zi(a/azj) - zj(a/azi) in polar coordinates, and noting that the 
derivative ofg  with respect to each polar coordinate except R vanishes if g is constant 
on S. Upon using (4.3) together with continuity equation (2.15b) in (4.1), we thereby 
obtain 

(4.4) 1 au!? [ i3R 
nk Pf& vsi = zi pp)  - R -..A- lvj*. 

4.1. Translation parallel to the x1 axis 

This subsection addresses the boundary-value problem corresponding to the case 
where U ,  + 0, while, simultaneously, U ,  = U ,  = 52, = 52, = 52, = 0. (Moreover, for 
reasons discussed earlier in this section, we shall only address the case for which 
a,  $. 0, while, simultaneously, az = 0.) 

From results given by Lee & Leal (1980) we deduce the following expressions for 
py)  and ufj (k,j = 1,2 ,3) :  

a (0 (t) 
pit) = c-l cos$(coshr-p)i C [A: s i n h ( n + + ) r + B i  cosh ( n + + ) r ] P i ,  (4.5a) 

n=1 

m (t) (t) 
+cos2$ 2 [Di sinh(n++)q+Ek cosh(n++)r ]Pi  

12-2 

(t) (t) 

= $ ~ ~ p ~ ~ ) + $ s i n 2 $ ( c o s h ~ - p ) ~  C [Dk s inh(n+i ) r+El ,  cosh(n++)r]  P i ,  ( 4 . 5 ~ )  

n-1 

(4.5d) 

(4.6a) 
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The coefficients A:, BF, . . . , GT (m = 0 , l )  appearing in (4.5)-(4.7) are to be obtained 
by solving appropriate combinations of equations (3.6)-(3.10) and (3.16)-(3.18). 

(t) (t)  ( t)  

For a sphere translating parallel to the x1 axis: 

m (t) 

q50 = c - ~  cosq5(coshy--p)i C HkPk  exp[-(n++)y], (4.8a) 
n=1 

m (t) 

q51 = c-' cos2q5(coshy-p)~ exp[-(n+i)y]+ C K k P i  exp[-(n+$)y]}, 
n=2 

(4.8b) 

c,i2 = ~-~sin2q5(coshy-p)~ C K k P i  exp[-(n++)q]. ( 4 . 8 ~ )  

To determine lva, we substitute q50, q5, and q52 from (4.8) into (3.32)-(3.35) to first 
determine +o and $i (i = 1 , 2 , 3 ) ,  which are then employed in ( 3 . 2 7 ~ ) .  Having defined 
all the terms in (3.36) and (3 .37) ,  we are now in a position to evaluate the surface 
integrals appearing in these equations, and hence to determine the first-order force 
lFi and torque lT, exerted by the fluid on the sphere. These calculations require the 
evaluation of integrals possessing the following forms (or reducible thereto) : 

m (t) 

n=z 

and 

(4.9a) 

(4.9b) 

(m = 0 , l ;  n 2 1) .  Results given in Gradshteyn & Ryzhik (1980; pp. 796, 821) can be 
used to demonstrate that 

(4.10) 

(4.11a) 

in which x = cosh yo. Moreover, QF is the associated Legendre function of the second 
kind. 

Numerical evaluation of the non-zero first-order force and torque coefficients 
- ,F1/,?a ,U, = A and - ,T2//3ol ,Ul = H appearing in (3.54) have been performed for 
a range of K values. The results are displayed in table 2. Also tabulated are asymptotic 
expressions for the limiting cases K +  0 and K +  1,  respectively extracted from the 
'reflection ' analysis of Falade & Brenner (1985) and the ' lubrication ' analysis of Cox 
(1974) by the methods discussed in the Appendix. 
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4.2. Translation parallel to the x2 axis 

For this case, 

$o = ~-~sin$(coshr-,u)t  C HiP i  exp[-(n++)r],  ( 4 . 1 2 ~ )  

$ = - - - I  c sin2$(cosh~-,u)~ Kip :  exp[-(n++)r],  (4.12 b)  

$2 = c-l cos2$(coshr-p)f C JiPO, exp[-(n++)r]+ C K t P t  exp[-(n++)r]  . 

and $2 are defined by the relations 

02 (t) 

n=1 

00 (t) 

n=2 

'x (t) 'x (t) I { n = o  n=z 
( 4 . 1 2 ~ )  

Equations (4.12) are used first in (3.32)-(3.35) and then in (3.27a) to determine 
l v t  for this case. The first-order curvature effects upon the force and torque 
1q are determined by evaluating the integrals in (3.36) and (3.37). The results 
of these calculations yield the non-zero first-order force and torque coefficients 
- lF2/ /?alU2 = B and -,T1//3alU2 = -G of (3.54). Numerical values of these two 
coefficients as a function of K are given in table 2. 

4.3. Translation parallel to the x, axis 

For this class of motions, 
m (t) 

$o = c-2(coshr-,u)t C HO,PO, exp[-(n+i)r] ,  

#1 = c-l cos$(coshr-,u)i C J",iexp[-(n++)r], 

$2 = c-l sin$(coshr-,u)i C JO,P', exp[-(n+a)r].  

(4.13 a )  
n-0 

m (t) 

(4.13 b)  
n=l 

00 (t) 
(4 .13~)  

The resulting numerical calculations for this case confirm that with the exception 
of the -1F3//3a ,U, = G resistance coefficient in (3.54), all of the remaining five U ,  
coefficients of the first-order a1 resistance matrix of (3.54) vanish identically. Values 
of C vs. K resulting from these numerics are tabulated in table 2. 

n=1 

4.4. Rotation about the x1 axis 

In this case py) and u&) (k,j = 1 , 2 , 3 )  are as given in (4.5)-(4.7), except that now the 

superscript (t) is replaced by (r), whilst the coefficients AT, BE,.  . . , GE are 
determined differently, through (3.6)-(3.10) and (3.16)-(3.18). Moreover, $1 and 
$2 have the forms given in (4.8); however, the coefficients H i ,  Ji and K i  now carry 
the superscript (r) rather than (t). Calculations of the first-order curvature effects 
upon the force and torque yielded the non-zero coefficients - ,F2//?a ,al = -4G/3, 
-,Tl//3alSLl E D of (3.54). These are tabulated in table 2 as a function of K .  As a 
consequence of the reciprocal theorem, the coefficient (I! is, of course, the same as that 
already derived in $4.2. 

4.5. Rotation about the x2 axis 

Upon performing the requisite algebraic manipulations for this case - calculations 
that are by now familiar - and subsequently evaluating the integrals in (3.36) and 

(r) (0 (r) 
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(3.37), we deduce the values of the non-zero first-order coefficients -,F1//3a ]Q, = 
4H/3 and - ,T,/Pa ,a2 = E appearing in (3.54). These are tabulated in table 2 us. K .  

The values of H obtained in this way accord with those derived in $4.1, such equality 
of coefficients being a consequence of the reciprocal theorem. 

4.6. Rotation about the x3 axis 

In this case, $o ,  $1 and $2 retain the forms given in (4.13), except that  now the 

superscripts (t) affixed to H i  and J i  are replaced by (r). H i  and J i  were then 
determined from an appropriate solution of (3.6)-(3.10) and (3.16)-(3.18). Evaluation 
of the integrals in (3.36) and (3.37) yielded only one non-zero Q, coefficient, namely 
- 1T3//3a ,Q, = F in (3.54). Calculated values of this coefficient vs. K are tabulated in 
table 2. 

(r) (r) 

5. Sphere moving nearby to a spherical wall 
As our first example of the application of the results of $93 and 4 to specific wall 

geometries, consider a sphere S (physical radius = a )  executing arbitrarily directed 
translational and rotational motions proximate to a larger sphere W (physical 
radius = R,) for the case where /3 = a / R ,  4 1 and d/R,  4 1 .  Interest centres on 
calculating the force and torque on the moving sphere for both the interior and 
exterior particle position cases, respectively depicted in figures 2 ( a )  and 2 ( b ) .  
Discussion of these two examples is motivated by the availability of exact bipolar 
coordinate solutions of (the quasi-static) Stokes equations for both the internal and 
external sphere configurations, for all physically possible /3 and K values. These allow 
a quantitative assessment of the accuracy of our asymptotic results, albeit only in 
the case where the boundary W is spherical. 

In terms of the stretched Cartesian coordinate system introduced following (2.12),  
whose origin Q lies at the point of intersection of the line-of-centres of thc two 
spherical surfaces with the spherical wall W ,  the non-dimensional equation of the 
latter boundary is 

Here and subsequently, the upper and lower signs refer to the respective cases whcrc 
the moving sphere lies inside (figure 2 a )  or outside (figure 2b)  of the stationary 
spherical surface W .  For these two configurations we find from (5.1) and (3.43) 

x3 = ~p-1- (p-2 - xf - ~ $ 1  on W .  (5.1) 

thatt 
El = a2 = + 1 .  ( 5 . 2 )  

adopts the form 

. I . -gp . 
I 

(5.3) 
Ql 

’ 

t Equivalently, binomial expansion of (5.1) for p G 1 about the contact point Q ,  rorresponding 
t o  x1 = x2 = x3 = 0, yields 

x3 = ~ ~ ~ ( x ~ + ~ ~ ) + O ( , 8 ~ )  on W .  

Direct comparison of this with (3.46) immediately furnishes the values of a1 and aP set forth in 
(5 .2 ) .  
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Spherical 
particle (S) 

Fluid domain 

FIGURE 2. (a) Spherical particle S inside of a large sphere W .  ( b )  Spherical particle S outside of 
a large sphere W .  

wherein 
Kt, = a I f : ( A + R ) p + O ( p 2 ) ,  

K‘, = c f ( D + E ) p + o ( p z ) ,  

Kf = b & 2Cp+ O(p2)), 

K; = d k 2Fp+ O(p2)), 

K“ = e T ( G + H ) p + 0 ( p 2 ) .  

(5.4a) 

(5.46) 

(5.4c) 

(5.4d) 

(5.4e) 

Equations (5.4), togethcr with tables 1 and 2, furnish the five resistance 
coefficients, appearing in (5 .3 )  in the form K = K ( K , ~ ) .  These asymptotic results, 
valid only for p < 1 and K-’P 6 1, may be compared with the exact bipolar- 
coordinate, two-sphere results available for the entire parametric range 0 < p < 1 
(and for all physically possible K values) as discussed below. 

5.1. Translation and rotation perpendicular to the line of centres 
For this asymmetrical case, O’Neill & Majumdar ( 1 9 7 0 ~ )  tabulate exact bipolar- 
coordinate-derived values of the three ‘indirect’ coefficients KY, K‘, and K c  for all 
possible p and K values. Included are both internal (figure 2a)  and external (figure 2 b )  
configurations. Their exact valuest are compared in table 3 with our asymptotic 
results, derived from (5.4) together with tables 1 and 2 .  

t In the notation of O’Keill & Majumdar ( 1 9 7 0 ~ )  these correspond to 

f,, G K ; ,  g,, K I ,  g2, = 3f,,/4 EE -Kc ,  

which depend functionally upon the parameters 

E A-‘ , h =+_J’, k =  p-’, 
with upper and lower signs respectively designating the internal and external cases. 
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K - l  

1.5 K: 
K'L 

1.4 Kt, 
K; 
K" 

1.05 Kt, 
K'L 
K" 

1.005 Kt, 
Ii; 
K' 

K" 

External Internal 

p = 0.2 p = 0.25 

Eq. (5.4) Exact 

1.4072 1.3657 
1.1097 1.0877 
0.0561 0.0506 

1.9652 2.0543 
1.6164 1.5566 
0.2587 0.2319 

2.5522 2.8464 
2.2860 2.2593 
0.5501 0.4962 

Eq. (5.4) Exact 

1.3982 1.3867 
1.1368 1.1097 
0.0802 0.0666 

p = 0.25 

Eq. (5.4) Exact 

1.9528 2.7870 
1.1493 1.2075 

-0.0349 -0.1306 

TABLE 3. Resistance coefficients for a small spherical particle translating and/or rotating about an 
axis lying parallel to the tangent plane of a nearby spherical wall, equivalent to motion about an 
axis lying perpendicular to the line of centres of the two spheres. 

For the external case the agreement is generally quite good, especially when it is 
considered that the p values for which the comparison is made can hardly be said to 
satisfy the assumed inequalities, /3 4 1 and K-'P < 1 .  Agreement between the 
asymptotic and exact results is not nearly so satisfactory for the internal case. This 
disparity can be attributed in part to the fact that the p value (for which comparison 
was possible) was not small, and in part to  the fact that the vanishing velocity 
boundary condition (2 .22)  imposed a t  infinity upon the first-order field (2.19)-(2.22) 
introduces a significant error into the physically bounded internal case, except of 
course when p < 1 strictly. 

5.2. Translation and rotation parallel to the line of centres 

Exact bipolar results for the remaining spherelsphere coefficients Ki and K ;  were 
obtained by extending the axisymmetric analysis of Stimson & Jeffery (1926).t 
These exact results are compared in table 4 with the asymptotic p < 1 results derived 
jointly from (5.4) and tables 1 and 2. As expected, the agreement is quite good a t  the 
smaller p value (p  = 0.05) and less so a t  the larger one (p = 0.20). Moreover, for 
the same p value, agreement is substantially better for the external case than for the 

t After completing these bipolar calculations, we became aware of the comparable analyses of 
Cooley & O'Neill (1969a,b) for Kh and Majumdar (1965, 1969) for Ki. For those few common 
choices of parametric values of p and K permitting comparison with our K;  values, quite good 
agreement was observed. For example, in the internal case, and with p = 0.2, the values given by 
Cooley & O'IVeill (1969b) (corresponding to one-half of the values tabulated in their table 3), were, 
respectively, 5.0627 (K-' = 1.4), 16.7018 ( K - ~  = 1 .1 )  and 32.2660 ( K - ~  = 1.05) vus. our 'exact' values, 
tabulated in table 4. Likewise, in the external case, and for /3 = 0.2 and K - ~  = 1.05, Cooley & O'Neill 
(1969b) give Ki = 15.5903 vus. our exact table 4 value. In general, agreement obtains to within a t  
least several parts in ten thousand. 

Except for the special case of tangent spheres (i.e. K = 1 )  treated by Majumdar (1969), the exact 
bipolar-coordinate results for Ki; (Majumdar 1965) were not accessible to us. However, comparison 
of Majumdar's (1969) tangent-sphere 'lubrication ' results with those of our analysis are made at 
the end of this section. 
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External Internal 

p = 0.05 

Eq. (5.4) Exact 

1.5162 1.5113 
1.0039 1.0037 

2.0329 2.0292 
1.0140 1.0137 

2.7026 2.6986 
1.0287 1.0282 

3.5192 3.5156 
1.0440 1.0439 

5.9076 5.9050 
1.0748 1.0756 

10.5830 10.5803 
1.1073 1.1069 

19.9086 19.8107 
1.1338 1.1328 

38 3277 38.1186 
1.1528 1.1519 

p = 0.20 

Eq. (5.4) Exact 
~ 

~ ~ 

1.7553 1.8140 
1.0085 1.0092 

2.2636 2.3549 
1.0193 1.0201 

2.8699 3.0075 
1.0293 1.0324 

4.6077 4.8905 
1.0495 1.0577 

7.9542 8.5296 
1.0778 1 .O828 

14.8771 15.6647 
1.0998 1.1035 

28.1441 29.762 
1.1140 1.1187 

p = 0.05 

Ey.  (5.4) Exact 

1.6222 1.6410 
1.0054 1.0060 

2.2181 2.2399 
1.0178 1.0186 

2.9952 3.0243 
1.0349 1.0361 

3.9520 3.9912 
1.0538 1.0648 

6.7742 6.8452 
1.0916 1.0919 

12.3354 12.4830 
1.1269 1.1286 

23.2630 23.6701 
1.1564 1.1591 

45.1167 46.0063 
1.1788 1.1816 

p = 0.20 

Eq. (5.4) Exact 
~ ~ 

- - 

2.4957 2.7534 
1.0233 1.0316 

3.4342 3.7760 
1.0443 1.0549 

4.6013 5.0631 
1.0685 1.0792 

8.0741 8.9368 
1.1169 1.1271 

14.9642 16.7034 
1.1564 1.1743 

28.2945 32.2892 
1.1904 1.2139 

55.3003 63.5439 
1.2176 1.2435 

TABLE 4. Resistance coefficients for a small spherical particle translating and/or rotating about an 
axis lying perpendicular to the tangent plane of a nearby spherical wall, equivalent to  motion 
parallel to the line of centres joining the two spheres. 

internal one, as was also observed to occur for the asymmetrical sphere motions of 
table 3.  The rationalization advanced in that context to explain this phenomenon 
remains equally true in the present symmetrical case. 

5.3 .  ' Lubrication-theory ' asymptotes ( K  + 1 )  
Asymptotic results for this A $- 1 case, involving two unequal spheres in both 
internal and external configurations, are given : (i)  by O'Neill & Majumdar (1970b) 

( i i )  by Cooley & O'Neill (19696) for the symmetrical translational case as 

and (iii) by Majumdar (1969) for the symmetrical rotation case as 

m 

~f = c [ ( n + 1 ) ~ ~ ~ 1 - 3 + 0 ( ~ - 1 ) .  
n=O 

( 5 . 5 U )  

(5.5b) 

(5 .5c)  

( 5 . 5 d )  

(5.5e) 
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Note that the leading term of the latter represents the exact tangent-sphere (i.e. 
A-' = 0) result, which is non-singular. As usual, the upper and lower signs in each of 
(5.5) apply respectively to the internal and external modes. 

Each of these five asymptotic results is valid for all /3. Upon expansion for /3 < 1 ,  
these results are readily shown to conform exactly with our (5.4) small-gap 
counterparts upon utilizing the A - l - r O  asymptotes displayed in the last rows of 
tables 1 and 2 ,  the latter values having been derived independently (see the 
Appendix) from the general lubrication- theory analysis of Cox (1974) for arbitrary, 
generally non-spherical surfaces in close proximity. 

The only comparison requiring further elaboration stems from the expansion of 
(5.5e) for small /3. Binomial expansion of the latter yields 

Kf = 5 ( 3 ) ~ 3 [ 5 ( 3 ) - 5 ( 4 ) 1 P + O ( P 2 ) ,  (5.6) 

wherein 

is the Riemann zeta function (Abramowitz & Stegun 1964). Numerically, 

K f  = 1.2021 +0.3592P+0(/l2), (5.7) 

in conformity with (5.4d). 
Observe that the algebraic signs of the /3 coefficients appearing in (5 .5)  explicitly 

confirm our previous speculation that, for the asymptotic /3 < 1 case, the errors 
incurred for the internal configuration case will always exceed those for the external 
configuration case at  the same value of /3. Additionally, ( 5 . 5 ~ )  shows that the 
coupling coefficient K C  for the internal mode undergoes a change in algebraic sign 
a t  /3 z 0.25,  a t  least in the lubrication-theory limit (but see table 3 for more general 
confirmation of this fact). This sensitivity in the neighbourhood of /3 x 0.25 also 
suggests why the percentage error in K" for this /3 value (see table 3) is so much larger 
for the internal mode than the external one. The importance of this change of 
algebraic sign in the internal-mode coupling coefficient K" for the spherical-outer- 
boundary case relates closely to the slip-velocity calculation of (6.12) for the circular- 
cylindrical-outer-boundary case, discussed in $6. 

6. Sphere moving near a circular cylindrical wall 
In terms of applications, the most commonly encountered boundary shape is that 

of an infinitely extended circular cylinder (containing the spherical particle in its 
interior). This section applies the generic results of $93 and 4 to this specific case 
(more generally to both internal and external sphere motions), and subsequently uses 
the explicit results obtained to resolve the 'paradox ' described in the Introduction 
- which problem motivated our original efforts. 

In the notation of the stretched Cartesian coordinate system introduced following 
(2.12), the equation defining the cylinder wall W (with x2 as the longitudinal cylinder 
axis) is 

Here, and subsequently, the upper or lower signs apply according as the sphere is 
located inside (figure 3a) or outside (figure 3b) of the cylinder. From (6.1) and (3.43) 
(see also the footnote to ( 5 . 2 ) )  it  follows that 

a1 = fl, a2 = 0. ( 6 . 2 ~ .  b )  
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tx3. Spherical 
particle (S) 

Fluid 
domain 

‘i w Circular cylindrical 

FIGURE 3. (a )  Spherical particle S inside of a large circular cylinder W .  (b )  Spherical particle S 
outside of a large circular cylinder W .  

Accordingly, (3.54) may be written in the form 
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External 
field 

I H 

I 

Rotating circular 

0 = csw *-=\ trajectory 

FIQURE 4. Force-free dipolar sphere (radius = a )  containing an embedded dipole p and suspended 
within a large fluid-filled circular cylinder of radius R, that is rotating with angular velocity w 
about its longitudinal axis which lies perpendicular to an external field H.  

The preceding expressions furnish each of the eight non-zero resistance coefficients 
Ki] as explicit functions of K and p. Since all of the coefficients a f ~ ) ,  b ( ~ ) ,  . . . , G ( x ) ,  
H ( K )  tabulated in tables 1 and 2 are non-negative for all K ,  (6.4) shows that for the 
internal case all of the six ‘direct ’ translational and rotational coefficients increase 
with increasing /3, whereas the two ‘indirect ’ coupling coefficients decrease with 
increasing p. The converse holds for the external case, where the sphere lies outside 
of the cylinder. 

6. I .  Dipolar sphere in a rotating circular cylinder 

As in figure 4 we consider a fluid-filled circular cylinder of radius R, rotating 
symmetrically with angular velocity w about its longitudinal axis. Situated with its 
centre 0 a t  a distance R = R,--d from the cylinder axis is an otherwise neutrally 
buoyant spherical particle of radius a containing an embedded vector dipole p 
permanently locked into the sphere. When a (space-fixed) uniform external field H 
exists, an external couple 

acts on the sphere, tending to align the dipole parallel to the field. In  its absence the 
sphere would simply participate in the otherwise rigid-body rotation occurring 
within the cylinder interior, with its centre 0 translating with velocity w x R whilst 

Tee) = p x H (6.5)  
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the sphere rotates about an axis through its centre with angular velocity 0 ;  here, 
R = R R  is the position vector of the sphere centre relative to the cylinder axis, with 
R a unit vector. 

Owing, however, to the action of the external couple, such unconstrained motion 
of the sphere is no longer possible (except trivially), whence the translational velocity 
U of the sphere centre and the angular velocity SZ of the sphere will no longer conform 
to their rigid-body values. In  order to calculate these constrained velocities we 
write 

and 

for the Stokes force and torque (about the sphere centre). In contrast to prior 
notation, all quantities appearing in (6 .6)  and (6 .7)  possess their physical 
(dimensional) values. In  particular, the dimensional hydrodynamic resistance 
dyadics appearing in (6 .6)  and (6 .7)  are related to the non-dimensional resistance 
components appearing in (6 .4)  by the expressions 

Kt = 67ca(i1 il K;, + i, i,K;, + i3 i3K:3),  (6 .8a)  

K" = 87ca2(i, i, KYz - i, i, K;,), (6 .8b)  

K' = 8 7 ~ a ~ ( i , i ~ K ~ ~ + i , i , K ~ , + i ~ i ~ K ' j ~ ) .  ( 6 . 8 ~ )  

Consistent with the definitions of the unit vectors (il, i,, i3) implicit in figure 3 ( a ) ,  we 
have that (see figure 4) 

i , = C i , x R ,  i,=-Ci,, i3 = - R ,  (6 .9a ,  b ,  c )  

with Ci, = o / w  a unit vector, and w = 1 0 1 .  
Owing to the absence of any net external force F(e) acting on the sphere, together 

with the fact that F+F(e )  = 0, we have that F =  0 in ( 6 . 6 ) . t  Following the original 
example (Brenner 1984) leading up to the present calculations, further attention will 
be confined to circumstances for which : (i) the external field H i s  perpendicular to the 
cylinder axis (I?. Ci, = 0) ;  (ii) the sphere does not rotate about its own axis ($2 = 0 ) ,  
corresponding to the case where the non-dimensional parameter pH/8xpa3w exceeds 
a threshold value (of unity in the case where wall effects are negligible). This occurs 
either for large fields H = IN1 (not to be confused with the wall-effect coefficient H )  
or slow rotation speeds w .  Physically, the dipole vector p lies in the plane of figure 4, 
somewhere between the 6 o'clock position it possesses when w = 0 and the 3 o'clock 
position it attains a t  the threshold value. (Below this threshold value the non- 
rotating case = 0 is no longer possible, and the sphere undergoes an unsteady 
rotation (Brenner 1984).) 

= 0 in (6 .6)  and solving for U,  we obtain 

(6 .6)  

(6 .7)  

F = -p[Kt. ( U - 0  x R )  + KCT * ( a - w ) ]  

T = -p[K" * ( U-o  x R )  +lc' * ( a - w ) ]  

def 

Upon setting F = 0 and 

u-0 x R = ( K y  * KCT - 0. (6.10) 

Upon use of (6 .8)  and (6.9) this yields 

U = W X R ( ~ + O , ) ,  (6.11) 

with 
- 4 a Kil us=--- 

3 R,-d K;, 
(6.12) 

t Additionally, T = - T(e)  =+ 0 ,  where Fe) is given by (6.5). However, we shall not explicitly use 
(6.7).  
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the non-dimensional 'slip' velocity of the sphere (centre). Thus, the sphere centre 
traverses the same circular trajectory as it would in the absence of the dipole (or 
field), except that now, owing to the existence of the latter in conjunction with wall 
effects, the sphere will translate faster or slower than the undisturbed rigid-body 
motion occurring in its proximity according as 0, is positive or negative. Accordingly, 
the algebraic sign of this slip velocity acquires heightened importance in terms of this 
departure from simple rigid-body rotation. 

With use of (6.4) (for the internal case), the slip velocity (6.12) can be expressed 
in the form 

(6.13) 

at  least for P 4 1. (Note that the inequality 1 - K - ~ P  > 0 always holds for the internal 
case.) For any given P, (6.13) permits investigation of how the slip velocity varies 
with the radial position K of the sphere. Of course, our entire calculation pertains only 
to  the case where the sphere is relatively close to the cylinder wall, namely 

d/R, = K - ~ P  4 1 .  (6.14) 

Observe from (6.13) that, as regards the algebraic sign of the slip velocity for the 
present internal case, 

sgn 0, = sgn [ e ( K )  - - H ( K )  PI. (6.15) 

Two limiting cases are of special interest to us in relation to our previous (Brenner 
1984) incomplete discussion of the slip. 

Case ( i )  Plane-wall approximation : 

P 4 1, K = O(1). (6.16a, 6 )  

This limit gives rise to the so-called flat-wall approximation. In  this limit (which 
clearly satisfies the inequality (6.14) automatically), (6.13) reduces to 

(6.17) 

The algebraic sign of this slip velocity is a consequence of the non-negative nature 
of e and a, displayed in table 1. 

Case (ii) Hirschfeld et al. (1984)/Falade & Brenner (1985) 'reflection' approxi- 
mation : 

P 4 1 ,  K 4 1 .  (6.18a, b )  

From the K + O  asymptotes tabulated in the first rows of tables 1 and 2, (6.13) here 
reduces to 

0, - & / 3 ~ ( 1 6 ~ ~ - 9 P ) .  (6.19) 
For example, the choice 

K = O(P'-') = LP1-', (6.20) 

say, with L an O(1) constant, and e chosen to lie in the range 

; > c : > 0 ,  (6.21) 

will satisfy inequalities (6.18b) and (6.14), while simultaneously furnishing the 
strong inequality 9P 9 1 6 ~ ~  for the specified parametric range. Hence, in such 
circumstances, ,. 

U s  = -&LP3-' < 0, (6 .22 )  
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whence the slip velocity is negative. When the inequality (6.21) holds, the p- 
dependence of the slip velocity varies between O(@) and O(p3)),  whereas in (6.17) the 
dependence is of O(p).  Insofar as magnitude is concerned, the latter constitutes a 
much larger wall effect than does the former. 

It follows from these considerations that (for a fixed p) as the sphere moves from 
the inner wall region K = O( 1 )  to the outer wall region K 4 1, the sphere changes from 
leading to lagging the fluid in which it is suspended. At  the same time, the magnitude 
of this slip velocity diminishes. This slowing down of the suspended particles with 
increasing distance from the wall does not occur abruptly, but rather gradually. 
Indeed, from (6.13) we see that a t  the radial distance K given by E(K)/U(K) = p no slip 
velocity occurs a t  all. For the K < 1 case, (6.19) shows that this occurs when the 
sphere centre is situated a t  the dimensionless position 

K = (9/3/16)9. (6.23) 

As regards the basic physics of the problem, we believe that the change in algebraic 
sign of the slip velocity with increasing distance of the sphere centre from the wall 
arises from the fact that it  then begins to feel the presence of the opposite side of the 
rotating cylinder due to the long-range wall effects characteristic of Stokes flows. 

These general facts are important in connection with the possible existence and 
algebraic sign of the slip velocity occurring at the wall of an otherwise stationary 
ferrofluid suspension in the presence of a rotating magnetic field (Rosensweig 1982 ; 
Brenner 1984). Further work will be necessary to transform our single-particle 
analysis into a form suitable for dealing with suspensions, or attempting to 
incorporate Brownian motion effects (as well as 0 $. 0 effects) into a complete 
analysis of the phenomenon. 

This research was jointly supported by the US National Science Foundation and 
the US Army Chemical Research and Development Center. 

Appendix. Asymptotic resistance coefficients 
In this Appendix we outline the sources for the respective K + O  and K --f 1 

hydrodynamic resistance asymptotes tabulated in the first and last rows of tables 1 
and 2 as representing the respective plane wall [O($)] and first-order [O(p)]  wall- 
curvature resistance coefficients for the sphere in proximity to a bounding wall. 

A. 1. ‘ Rejlection ’ results : K + 0 
A.l.l. O($). The asymptotic expressions appearing in the K - ~  + 03 row of table 1 

derive from reflection-type analyses (Lorentz 1896) of the translational and 
rotational motions of a spherical particle moving far from a plane wall bounding a 
semi-infinite quiescent fluid. These results are summarized by Goldman et al. 
(1967a).  

A.1.2. O(/3). These first-order coefficients, appearing in the K - ~  --f co row of table 2,  
derive directly from the reflection analyses of Hirschfeld et a2. (1984) and Falade & 
Brenner (1985). 

A.2. ‘Lubrication ’ results : K + 1 

A.2.1. 0(/3”). Asymptotic expressions for the K-dependence of the coefficients a ,  c 
and e ,  given in the K - ~ +  1 row of table 1,  derive from the independent analyses of 
O’Neill & Stewartson (1967) and Goldman et al. (1967a) for the translational and 
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rotational motions of a sphere parallel to a nearby plane wall bounding a semi- 
infinite, otherwise quiescent fluid. 

Comparable expressions for the remaining two coefficients, b and d,  derive 
respectively from the solutions of Cox & Brenner (1967b) for the axisymmetric 
translation of a body of revolution normal to a plane wall in the small-gap limit, and 
from the symmetrical rotation about an axis normal to a plane wall of a sphere whose 
surface is tangent to the wall. Note that the latter d coefficient is non-singular in this 
limit. 

A.2.2. O(p) .  With the exception of the F coefficient appearing in the K - ~ +  1 row 
of table 2, which is non-singular in the K = 1 limit, the remaining singular A-l  + O  
coefficients were derived from the general ‘lubrication-theory ’ analysis of Cox (1974) 
for the relative translational and rotational closely proximate motions of two smooth 
surfaces, each of arbitrary curvature, and separated by a narrow fluid-filled gap 
(whose minimum thickness is small compared with each of the four principal radii of 
curvature characterizing the two surfaces in the neighbourhood of the gap). Cox’s 
(1974) analysis, which yields all the singular, lubrication-type terms, is not restricted 
to small p, but rather applies more generally? in the sense of (5.5) vs. (5.4). 
Nevertheless, we have used only the p < 1 aspects of his work (obtained by binomial 
expansion) in deriving the asymptotic results set forth in table 2. Simultaneously, the 
leading term [of O($)] in this expansion furnishes independent confirmation of the 
comparable plane-wall asymptotic results set forth for each of the singular coefficients 
in the K - ~  + 1 row of table 1. 

In the course of obtaining these 0(po) and O(p)  singular coefficients, Cox’s (1974) 
expressions for the intrinsic hydrodynamic resistance dyadics - originally given by 
him in terms of an origin situated at  the contact point (point Q in figure 1) - were 
transformed by us into the comparable resistance dyadics for an origin situated at  
the centre 0 of the moving sphere. This transition was effected by using the origin- 
transformation formulas of Brenner (1964a) (see also Happel & Brenner 1965, 
pp. 173-175), which transformation formulas apply equally well to the present 
wall-effect case (owing to the zero-velocity boundary condition on W). 

I n  deriving the asymptotic non-singular F term in table 2 for the tangent case, 
K = 1 - which O( 1) term is not explicitly given by Cox’s (1974) analysis ~ we employed 
the binomial expansion of Majumdar’s (1967) exact equation (5.5e) for the case /3 @ 1 
(cf. (5.6) and (5.7)), arising from the symmetric rotation of two unequal spheres in 
contact. This permitted us to compare (5.7) directly with (5.4d) and so obtain the 
limiting value, F = 0.17960, given in table 2. (Of course this same comparison 
simultaneously confirmed the non-singular d = 1.2021 value given for the O($) term 
in the K - ~  + 1 row of table 1.) The limiting F (and d)  value(s) derived in this manner 
from the spherical-wall analysis apply, of course, to the more general case where the 
wall W possesses arbitrary curvatures a1 and a2 in (3.54) ; for the tabulated values 
given in tables 1 and 2 are independent of the explicit shape of W - in particular of 
whether or not W is spherical. 

As a check of the accuracy of some of our numerical results, the entries in table 2 
for A ,  B, D, E and H a t  K - ~  = 1.025 and 1.005 were used to estimate the 
multiplicands of the logarithmic terms appearing in the asymptotic expressions for 
these O ( p )  coefficients as K - ~  --f 1. The approximate values of the multiplicands so 
obtained are compared in table 5 with the exact logarithmic coefficients given in the 
last row of table 2. 

t For the special case where both of Cox’s surfaces are spherical we have confirmed that the non- 
small /l results of (5 .5 )  are properly reproduced by Cox’s equations. 
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Multiplicand of log term 

Approximate 
Coefficient value Exact value 

A 0.986 74/75 = 0.987 
R 0.338 26/75 = 0.347 
D 0.269 13/50 = 0.260 
E 0.134 7/50 = 0.140 
H 0.181 19/100 = 0.190 

TABLE 5. Comparison of numerically estimated logarithmic coefficients with analytical values of 
these coefficients for selected K - ~  1 terms in table 2. 

It did not prove possible to carry out a similar exercise for G because its rate of 
approach to its asymptotic logarithmic value as K - ~  + 1 is much slower than those of 
A ,  B,  D, E and H .  

The non-singular, higher-order terms appearing in the asymptotic A + co 
expansions for the quantities A ,  B,  D, E ,  G and H ,  given in the last row of table 2,  
were numerically estimated from the respective K - ~  = 1.005 tabulations for these 
quantities. For C, the estimated multiplicands of the respective and l n d  terms 
were obtained from the tabulated C values at K - ~  = 1.025 and K - ~  = 1.005 in table 2 .  
Finally, the estimated multiplicand of the A-’ coefficient in the expansion of the non- 
singular F function in table 2 was derived from the tabulated F value a t  K - ~  = 1.005. 
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